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The Case for Subphonemic Attenuation in Inner Speech:
Comment on Corley, Brocklehurst, and Moat (2011)
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Corley, Brocklehurst, and Moat (2011) recently demonstrated a phonemic similarity effect for phono-
logical errors in inner speech, claiming that it contradicted Oppenheim and Dell’s (2008) characterization
of inner speech as lacking subphonemic detail (e.g., features). However, finding an effect in both inner
and overt speech is not the same as finding equal effects in inner and overt speech. In this response, I
demonstrate that Corley et al.’s data are entirely consistent with the notion that inner speech lacks
subphonemic detail and that each of their experiments exhibits a Similarity � Articulation interaction of
about the same size that Oppenheim and Dell (2008, 2010) reported in their work. I further show that the
major discrepancy between the labs’ data lies primarily in the magnitude of the main effect of phonemic
similarity and the overall efficiency of error elicitation, and demonstrate that greater similarity effects are
associated with lower error rates. This leads to the conclusion that successful speech error research
requires finding a sweet spot between too much randomness and not enough data.
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Inner speech is a form of imagery that supports many cognitive
activities, including reading, planning (e.g., Baddeley, Thomson,
& Buchanan, 1975), and possibly overt speech production moni-
toring (Levelt, 1983). Its generation is typically thought to involve
a subset of the processing required for speaking aloud, with dispute
over precisely how far that parallel extends. According to one
recent claim, from Oppenheim and Dell (2008), inner speech
corresponds to an abstract phonological processing level (e.g.,
Dell, 1986; Wheeldon & Levelt, 1995) with less robust (i.e.,
weaker or inconsistent) access to subphonemic information (e.g.,
featural, phonetic, motoric). It parallels overt production to the
point of retrieving and sequencing abstract phonemes, with pro-
cessing attenuated thereafter. Major empirical support for this
subphonemic attenuation hypothesis (SAH) comes from compar-
ing inner and overt “slips of the tongue” (e.g., REEF 3 /lif/).
Overt slips tend to involve similarly articulated phonemes (the
phonemic similarity effect; e.g., Nooteboom, 1969). For instance,
a /r/ to /l/ slip (voiced alveolars, differing in manner of articulation)

is more likely than a /r/ to /b/ (both voiced but differing in place
and manner). This reliable overt speech effect is often attributed to
the influence of subphonemic (featural) details during speech
planning (e.g., Dell, 1986), so its size in inner speech, compared to
overt, should reflect the relative contribution of subphonemic
information. If inner speech tends to involve subphonemic details
to the same extent as overt speech, then phonemic similarity
should be equally important in determining error patterns, yielding
equally strong similarity effects. But, if subphonemic information
is less important to inner speech (the SAH claim), then its simi-
larity effect should be weaker.

A weaker phonemic similarity effect was precisely what Op-
penheim and Dell (2008) found when comparing tongue-twister-
elicited errors in inner speech to those in overt, providing initial
support for the SAH. Comparable tendencies for both inner and
overt slips to create words (lexical bias) suggested robust engage-
ment at the phoneme level for inner speech, in contrast to the
differences in the similarity effects. Oppenheim and Dell (2010)
replicated and extended the work, demonstrating that silently
mouthing a tongue twister elicited an overtlike similarity effect in
inner speech, while the tendency in unarticulated inner speech was
again significantly diminished. Therefore, the attenuated similarity
effect in unarticulated inner speech could not be due to difficulty
“hearing” inner slips. Converging support for the SAH came from
observations that the influence of articulatory features in phono-
logical working memory hinges on a task’s use of overt articula-
tion (Schweppe, Grice, & Rummer, 2011). Thus, the SAH and
associated empirical findings have proven empirically robust and,
to judge by recent discussions (e.g., Geva, Bennett, Warburton, &
Patterson, 2011; Harley, 2010; Hickok, Houde, & Rong, 2011;
Hubbard, 2010; Huettig & Hartsuiker, 2010; Huettig, Rommers, &
Meyer, 2011; Laganaro & Zimmermann, 2010; Nooteboom &
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Quené, 2008; Nozari & Dell, 2009; O’Seaghdha, Chen, & Chen,
2010; Rahman & Aristei, 2010; Severens, Janssens, Kühn, Brass,
& Hartsuiker, 2011; Stemberger, 2009; Vicente & Martinez Man-
rique, 2011), theoretically useful.

Corley, Brocklehurst, and Moat (2011) recently presented evi-
dence that they interpreted as challenging the SAH. In three
experiments modeled on Oppenheim and Dell’s (2008) task, they
replicated the lexical bias findings but additionally observed sim-
ple main effects of phonemic similarity in both inner and overt
speech, with only “some small signs that there might be numerical
trends” (Corley et al., 2011, p. 169) toward a weaker similarity
effect in inner speech. Since their Similarity � Overtness interac-
tion was only marginally significant (p � .09 in a 2-df model
comparison), Corley et al. concluded in favor of the null hypoth-
esis that the similarity effects in inner and overt speech were equal:
“Over three experiments, we have shown that overtness does not
interact with similarity in predicting the likelihood of an onset
substitution” (Corley et al., 2011, p. 169). “Taking data from
18,432 total recitations of four-word tongue twisters by 112 par-
ticipants, no evidence could be found that any numerical difference
in the likelihood of substituting similar phonemes in inner com-
pared to overt speech was reliable” (Corley et al., 2011, p. 171).
“Phonemic similarity consistently influenced the likelihood of
reporting errors to a similar extent in inner speech as [it did] in
overt speech” (Corley et al., 2011, p. 171). As Corley et al. noted,
“Perhaps most surprisingly, when we replicated our experiments
using Oppenheim and Dell’s [2010] materials, the results were
consistent with our two earlier experiments” (Corley et al., 2011,
p. 171). Figure 1 compares results from Oppenheim and Dell’s
(2008, 2010) two studies with Corley et al.’s experiment using the
same stimuli (their Experiment 3). Oppenheim and Dell’s exper-
iments show significant crossover interactions, where the phone-
mic similarity effect was stronger in overtly articulated speech, but
Corley et al.’s crossover interaction was not statistically signifi-
cant. The figure clearly indicates a comparable interaction, though,
so it is important to closely examine it and Corley et al.’s other two
studies with different but comparable stimuli.

In Corley et al.’s (2011) Experiment 3, the similarity effect in
inner speech consisted of a 13-error difference between the similar
and dissimilar conditions, yielding an odds ratio of 2.1:1. This
difference is asserted to be equal to that in overt speech (29-error
difference, an odds ratio of 3.1:1): “participants were once again
much more likely (here, by a factor of 2.7) to substitute similar
rather than dissimilar phonemes, regardless of whether the speech
was overt or not” (Corley et al., 2011, p. 169). More generally,
Corley et al. concluded that, “far from being underspecified, peo-
ple’s inner voice sounds much like their overt speech and is
produced in much the same way, whether overtly articulated or
not” (Corley et al., 2011, p. 172). It is both the specific conclusion
that the similarity effects are the same in inner and overt slips and
the general one that inner speech is not underspecified that I
dispute here.

Like the similarity effect, the size of the Similarity � Articula-
tion interaction can be quantified as an odds ratio. In Corley et al.’s
(2011) Experiment 3, presented in the figure, the interaction effect
size was 1.45:1. It was even greater for their other two experi-
ments: 1.70:1 and 1.51:1. This means that Corley et al.’s overt
speech similarity effects were 45%, 51%, and 71% larger than

those in the comparable inner speech conditions. Do these findings
justify asserting the null effect? I argue that they do not.

Through a statistical and conceptual reconsideration of the error
data from five experiments (i.e., Corley et al.’s, 2011, three ex-
periments and Oppenheim & Dell, 2008, 2010), this analysis first
demonstrates that the data clearly and consistently support the
SAH prediction that phonemic similarity effects are weaker in
unarticulated inner speech. It also shows that Corley et al.’s (2011)
central finding—that their data showed no evidence of the ex-
pected Similarity � Overtness interaction—is false and, hence,
their theoretical interpretation—that inner speech is fully specified
for phonological features1—is unsupported, and that even a more
nuanced version of Corley et al.’s claim—that they found a sig-
nificantly weaker interaction than Oppenheim and Dell (2008,
2010)—lacks statistical support. Second, since Corley et al. could
not explain why they found a simple main effect of phonemic
similarity in inner speech whereas Oppenheim and Dell did not
(“we are not able to fully account for Oppenheim and Dell’s
findings”; Corley et al., 2011, p. 171), this response offers a
plausible resolution for the discrepant findings—one that draws on
a mathematical consequence of the overdetermined nature of
speech errors to demonstrate a long-recognized, but underappre-
ciated, aspect of speech error distributions.

The Phonemic Similarity � Articulation Interaction

The first analysis builds on Corley et al.’s (2011) recognition
that power issues for individual speech error experiments may be
alleviated by combining data across similar experiments. Labora-
tory studies of speech errors tend to elicit few errors of the desired
type, so even seemingly large studies may lack the power to
statistically detect a true effect. For instance, Corley et al.’s 18,432
total recitations only provided 340 target errors, spread over 112
subjects, 128 items, and four conditions in three experiments. It is
error counts that build the power of a binomial analysis—not the
number of trials, subjects, items, or experiments. (Mathemati-
cally,2 increasing the number of observations [trials], while hold-
ing constant the number of successes [errors], only reduces one’s
chance of statistically detecting an effect.) With few errors to
examine, even reasonably strong, consistent differences can be
difficult to detect. Though each of their experiments replicated
Oppenheim and Dell’s (2008, 2010) Similarity � Articulation
interaction (e.g., in the sense of Killeen’s, 2005, prep), even com-
bining data across experiments only allowed Corley et al. to detect
this reasonably large effect with marginal significance.

Of course, the real question is whether the interaction holds
overall—not whether it achieves significance in some arbitrary

1 In Corley et al.’s (2011) words, “inner speech is fully phonologically
represented” (p. 171). Corley et al.’s terminology reflects a linguistic
tradition where phonemes are considered, if anything, bundles of features
(e.g., Browman & Goldstein, 1989), whereas Oppenheim and Dell’s (2008,
2010) reflects a psycholinguistic approach where phonemes occupy a level
above features (e.g., Dell, 1986; Wheeldon & Levelt, 1995).

2 For instance, according to formulas such as SEp � �p�1 � p�/n.
Holding the number of successes constant (where p � successes/n), in-
creasing n only decreases p/SEp, thus decreasing the power to detect an
effect involving p. Since ORp1p2 � �p1/�1 � p1�/�p2/�1 � p2��, increasing
n decreases ORp1p2.
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subset. I address this question by extending Corley et al.’s (2011)
combined analysis to include Oppenheim and Dell’s (2008, 2010)
experiments, recoding Oppenheim and Dell’s data to match Corley
et al.’s methods. These five experiments used comparable materi-
als, tasks, and data coding to evaluate similarity effects and their
interaction with articulation. The data are first compiled in a single
table, providing the first parametric estimates of the interaction and
its interexperiment variability. (Neither Oppenheim & Dell’s,
2008, 2010, nonparametric statistics nor Corley et al.’s, 2011,
stepwise regression allowed such estimates.) Then per-trial data
are used to examine whether similarity effects are characteristi-
cally weaker in unarticulated inner speech, as Oppenheim and Dell
proposed, and to evaluate evidence for claims that this interaction
varies across labs.

Method

Analyses considered Oppenheim and Dell’s (2008, 2010) two
experiments and Corley et al.’s (2011) three. Each used four-word
tongue twisters with ABBA onset phoneme patterns, constructed
in matched sets varying featural similarity of the A and B onset
consonants (e.g., LEAN REED REEF LEECH vs. BEAN REED
REEF BEECH; see Oppenheim & Dell, 2008, for more details).
Each participant memorized and then attempted to recite a single
variant of each tongue twister four times, in a single articulation
condition, reporting their errors aloud.

I obtained the data set from Corley et al.’s (2011) three-
experiment meta-analysis (for which I am grateful) and recoded
Oppenheim and Dell’s (2008, 2010) data with their methods. The
main change was that, since Corley et al. counted all errors in a
given recitation (up to two target errors per attempt), whereas
Oppenheim and Dell (2008, 2010) considered only the first error,
I adopted Corley et al.’s scheme. Thus, the new error counts differ
slightly from those in Oppenheim and Dell’s previous studies.
Following Corley et al.’s treatment, each trial was binomially
coded as the number of target errors (successes) versus error-free

productions (failures). Target errors were reported slips from a B
onset to an A onset (e.g., REEF 3 /lif/) without other deviations
(e.g., REEF 3 /lid/).3

Following Corley et al. (2011), analyses used mixed-effects
logistic regression via Bates and Maechler’s (2010) lme4 package
for R (R Development Core Team, 2010), including crossed ran-
dom effects for subject, nested within experiment, and item, non-
nested to reflect some items’ reuse across experiments.4 Cross-lab
analyses treated lab as a fixed effect (base level is Oppenheim &
Dell, 2008, 2010); within-lab analyses used experiment instead.

Analyses considered three other fixed main effects: phonemic
similarity, articulation, and audition. As in the source experiments,
phonemic similarity (two levels) classified trials as similar or
dissimilar based on the number of feature contrasts between the
trial’s two onset phonemes (1 vs. �1). Articulation (two levels)
coded whether a trial involved overt movements, thus comparing
unarticulated inner speech (without overt articulation) to mouthed,
noise-masked, and normal overt speech (with overt articulation).
Audition (two levels) coded whether a trial involved subject-
audible overt speech (the so-called external loop), thus comparing
inner speech, silently mouthed speech, and noise-masked overt
speech (without external audition) to unmasked overt speech (with
external audition). Treating noise-masked and silently mouthed
speech as equivalent in this regard draws some justification from
Postma and Noordanus (1996), who demonstrated continuity be-
tween these conditions across an exhaustive range of self-reported
error types.

Fitting began with a full theoretically justified model, including
centered binary predictors for phonemic similarity, articulation,

3 Following Oppenheim and Dell (2008, 2010), I use all B3A target
errors to increase the statistical power, but all claimed significant effects in
the full analyses still hold if considering only Word 3.

4 Coding item as a nested random effect yields equivalent statistical
outcomes.
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Figure 1. Error distributions for the same stimuli in three experiments testing phonemic similarity effects in
overtly articulated and unarticulated (inner) speech. Oppenheim and Dell’s (2008, 2010) experiments (Panels a
and b) show larger similarity effects in articulated speech compared to unarticulated. The same crossover
interaction fails to reach significance in Corley, Brocklehurst, and Moat’s (2011) Experiment 3 (Panel c), where,
in their words, “participants were once again much more likely (here, by a factor of 2.7) to substitute similar
rather than dissimilar phonemes, regardless of whether the speech was overt or not” (p. 169). As Corley et al.
noted, the Panel c results “were consistent with [their] two earlier experiments” (Corley et al., 2011, p. 171).
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audition, and lab, plus two-way interactions between phonemic
similarity and the other predictors. To evaluate Corley et al.’s
(2011) claim that their Similarity � Articulation interaction dif-
fered from Oppenheim and Dell’s (2008, 2010), I also included a
Phonemic Similarity � Articulation � Lab interaction (and ancil-
lary Articulation � Lab interaction). Nonsignificant components
were incrementally removed to reduce collinearity, with the rele-
vant portion of the reduced model then refitted to each lab’s
individual data. Model coefficients (�) denote log-odds; p values
in the text reflect 1-df likelihood-ratio tests, evaluable under non-
directional (� � .05 for � � 0) or directional (� � .10 for � � 0
XOR � � 0) hypotheses as appropriate; tables provide Wald z
scores.

Results and Discussion

The five experiments provided 912 self-reported target errors
(487 in overtly articulated speech, 435 in unarticulated inner
speech), summarized in Table 1, to evaluate differences in phone-
mic similarity effects between overtly articulated and unarticulated
(inner) speech. The table suggests three major patterns. First,
similarity effects are clearly stronger in articulated speech than
unarticulated inner speech, and this holds for each individual
experiment, whether considering counts or odds ratios. Second,
although Corley et al.’s (2011) experiments show stronger simi-
larity effects overall, their Similarity � Articulation interaction is
remarkably stable and approximately equal in odds size to the
estimate from Oppenheim and Dell’s (2008, 2010) work. In fact
the “small signs that there might be numerical trends in this
direction” (Corley et al., 2011, p. 169) are not small at all: In
overtly articulated speech, their subjects reported 130 similar er-
rors to 47 dissimilar, an 83-error difference. In inner speech, they
reported 105 similar errors to 58 dissimilar, a 47-error difference.
Finally, although the two labs contributed comparable numbers of
trials (Corley et al., 2011: 18,000 vs. Oppenheim & Dell, 2008,
2010: 16,000), Corley et al.’s experiments elicited far fewer target
errors.

Statistical analyses support all of these trends (see Table 2).
Consistent with Corley et al.’s (2011) masking analyses, neither
audition5 (� � 	.18, 
2(1) � 2.66, p � .10) nor its interaction
with phonemic similarity (� � .04, 
2(1) � 0.03, p � .87),
reached significance. This reinforces Oppenheim and Dell’s
(2010) conclusion that smaller similarity effects in unarticulated
inner speech do not merely reflect the absence of an external loop
(cf. Levelt, 1983). Neither the Phonemic Similarity � Articula-
tion � Lab interaction nor its ancillary Articulation � Lab inter-
action approached significance (each |�| � .10, 
2(1) � 0.01, p �
.60), indicating a lack of support for claims that Corley et al. found
a smaller Similarity � Articulation interaction. Incrementally re-
moving these nonsignificant predictors reduced the model to the
five fixed effects discussed below (full-reduced comparison:

2(4) � 2.94 � crit[
2(1)]� � .05).

The tendency for target errors to involve similarly articulated
phonemes (� � .57, 
2(1) � 52.09, p � .0001) held for both
overtly articulated speech (� � .80, 
2(1) � 56.18, p � .0001) and
unarticulated inner speech (� � .33, 
2(1) � 6.13, p � .02)
separately. This pattern reinforces Corley et al.’s (2011) assertion
that inner speech can show similarity effects (contra Oppenheim &
Dell’s, 2008, data), implying inner speech can incorporate sub-

phonemic information under some conditions (e.g., as Oppenheim
& Dell, 2010, suggested).

However, finding a similarity effect in inner speech is not the
same as finding equal similarity effects in inner and overt speech.
In fact, the effect in overtly articulated speech is much greater,
about 1.6 times the size of that in unarticulated speech (Similar-
ity � Articulation interaction: � � .48, 
2(1) � 12.04, p � .0006).
As Table 1 suggests, this ratio holds quite well for each lab
individually (Oppenheim and Dell, 2008, 2010): � � .52, 
2(1) �
9.02, p � .003; Corley et al., 2011: � � .45, 
2(1) � 3.56, p �
.06), meaning that their data actually agree on the direction and
size of the Similarity � Articulation interaction. Note also that the
interaction in Corley et al.’s (2011) data would be significant under
the directional SAH prediction of a stronger similarity effect in
articulated speech. Thus, the combined data clearly support the
SAH, and each lab and each experiment individually contributes to
this support.

If the difference in the labs’ conclusions does not reflect differ-
ences in the size or direction of the Similarity � Articulation
interaction, what does it reflect? Here, the analysis statistically
confirms two points suggested by visual inspection of Figure 1.
First, Corley et al.’s (2011) experiments elicited target errors at
less than half the rate of Oppenheim and Dell’s (2008, 2010; main
effect of lab: � � 	.89, 
2(1) � 38.47, p � .0001). Second,
Corley et al.’s data showed stronger similarity effects overall, not
just for inner speech (Similarity � Lab interaction: � � .53,

2(1) � 13.02, p � .0003). Together these points appear to resolve
the question of why two labs would report contrasting results for
the Similarity � Articulation interaction that is the crucial test
of the SAH: Although both data sets showed a similar-sized
interaction, low error rates could make it harder to statistically
detect, and the presence of simple main effects of similarity in both
inner and overt speech would make the interaction easier to overlook.

To recap, the patterns from each experiment (see Table 1) and
the statistical results from each lab (see Table 2) individually
support the prediction of a weaker similarity effect in unarticulated
inner speech, indicating that the overt similarity effect is about
60% greater. Corley et al.’s (2011) failure to statistically confirm
the Similarity � Articulation interaction does not reflect a reliable
or even substantial discrepancy between the two labs’ data on that
point, as implied by claims that they failed to detect the interaction
despite great effort. And their simple main effect of similarity in
inner speech— erroneously claimed as evidence against the
SAH—is better characterized as a difference in the magnitude of
the main effect.

The Simple Main Effect of Phonemic Similarity in
Unarticulated Inner Speech

I have shown that the discrepancy in the presence of a simple
main effect of phonemic similarity in unarticulated inner speech,
which Corley et al. (2011) could not explain, is merely symptom-

5 The negative audition coefficient suggests a trend opposite what is
typically predicted (Levelt, 1983) and demonstrated (Postma & Noordanus,
1996), so a directional test of the coefficient has not been considered.
Retaining the predictor, however, would not noticeably change any
claimed results.
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atic of a difference in the size of the main effect. So, this section
proposes a theory-derived explanation that both stands on its own
and could account for some variation in similarity effects across
experiments. The story, in a nutshell, is that the overdetermined
nature of slips of the tongue has the consequence that their specific
causes (e.g., dimensions of similarity between interacting repre-
sentations) should be more evident (as odds ratios) when their
more general causes (e.g., stress, time pressure, novelty, priming)
contribute less. But with less support from general causes, the
resultantly rare events may provide more volatile estimates with
less statistical power.

Although speakers may complain that they err too often, re-
searchers complain that they err too rarely. Carefully controlled
stimuli often fail to compel unimpaired speakers to produce the
kinds of errors that researchers want in the quantities that they
need. So, researchers rely on seemingly irrelevant aspects of an
experiment to help elicit errors, such as time pressure, priming, and
otherwise difficult sequences. The classic SLIP procedure (Baars,
Motley, & MacKay, 1975), for instance, elicits spoonerisms in part

by priming a particular onset phoneme sequence and then unex-
pectedly reversing it (ABABABBA). Researchers assume that
such manipulations make phonological encoding less determinis-
tic—shifting productions away from near-ceiling accuracy and
hence increasing statistical power—but the resulting errors none-
theless reflect the structure and processes of successful speech
production. Their assumption reflects what Freud (1901/1958)
described as the overdetermined nature of speech errors: Many
factors interact to determine if and how production may miss its
mark. Thus a slip from BARN DOOR to /dɑrn bɔr/ may simulta-
neously reflect priming of the /d. . . b. . ./ onset pattern, featural
overlap between /d/ and /b/ onsets, lexicality of the resulting
utterance, pressure to respond quickly, and latent feelings of bu-
colic ennui. An underappreciated property of this overdetermina-
tion is that, if one factor better supports a slip, the remaining
factors become less crucial. For instance, if priming increases the
likelihood of substitutions in general, phoneme substitutions will
require less support from shared features (i.e., phonemic similar-
ity). Consequently, an error effect like that of phonemic similarity

Table 1
Aggregated Data for the Five Experiments

Study n
Trials per

cell p(target error) p(other error)

Articulated Unarticulated
Interaction

ORSim Dis OR Sim Dis OR

Oppenheim & Dell 128 4,096 .017 .114 196 114 1.72 133 129 1.02 1.69
2008 48 1,536 .016 .098 69 38 1.79 40 52 0.75 2.38
2010 80 2,560 .018 .123 127 76 1.68 93 77 1.20 1.41

Corley, Brocklehurst,
& Moat (2011) 112 4,608 .009 .049 130 47 2.88 105 58 1.84 1.57

Experiment 1 32 1,536 .007 .050 34 12 3.01 28 16 1.76 1.70
Experiment 2 32 1,536 .012 .057 53 21 2.62 50 29 1.73 1.51
Experiment 3 48 1,536 .008 .041 43 14 3.13 27 13 2.16 1.45

Total 240 8,704 .013 .064 326 161 2.06 238 187 1.27 1.62

Note. Sim � similar; Dis � dissimilar; OR � odds ratio, estimated by fitting a logistic regression model to the restricted data set.

Table 2
Regression Summaries

Experiment Odds ratio Coefficient � SE(�) z

All experiments
Intercept 0.01 	4.67 0.09 	49.77
Similarity 1.77 0.57 0.08 7.49
Articulation 1.11 0.10 0.07 1.43
Similarity � Articulation 1.62 0.48 0.14 3.44
Lab 0.41 	0.89 0.13 	6.72
Similarity � Lab 1.69 0.53 0.15 3.52

Oppenheim & Dell (2008, 2010)
Intercept, Experiment 2008 0.01 	4.35 0.16 	27.07
Experiment 2010 1.28 0.25 0.15 1.72
Similarity 1.33 0.28 0.09 3.24
Articulation 1.15 0.14 0.09 1.62
Similarity � Articulation 1.69 0.52 0.18 2.98

Corley, Brocklehurst, & Moat (2011)
Intercept, Experiment 1 0.00 	5.36 0.20 	26.74
Experiment 2 1.64 0.49 0.27 1.81
Experiment 3 0.98 	0.03 0.28 	0.09
Similarity 2.30 0.83 0.12 6.79
Articulation 1.05 0.05 0.12 0.38
Similarity � Articulation 1.57 0.45 0.25 1.84
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should tend to be larger in log-odds terms when fewer factors
promote slips and, hence, overall error probabilities are lower.

Error researchers have long recognized that when they are rarer,
errors are more likely to exhibit more of the properties that
promote them. For example, exchange errors (e.g., BARN DOOR
3 /dɑrn bɔr/) are relatively rare compared to other substitutions,
but it is in exchanges that similarity and familiarity effects are the
strongest (e.g., Dell, 1986; Garrett, 1980). Similarly, phoneme
substitution errors usually have obvious sources in the surrounding
context, but noncontextual slips show proportionally stronger pho-
nemic similarity effects (Stemberger, 1992), suggesting that sim-
ilarity is more crucial for slips with less contextual support. At the
other extreme, aphasic individuals, who make frequent phonolog-
ical errors, may show attenuated phonemic similarity effects (e.g.,
Goldrick & Rapp, 2007; Laganaro & Zimmermann, 2010), dem-
onstrating that similarity is less crucial for slips driven by other
(e.g., lexical) factors. Consider the following analogy: Students at
prestigious institutions often distinguish themselves by possessing
certain factors (e.g., intelligence, ambition, industriousness). A
student from a rich family, where attending such an institution is
more common, may need only one of these factors, but a student
from a poor family, who nonetheless makes it in, would be more
likely to possess all of them. Making an error is like making it into
college. If making it is rare, then those who do will more consis-
tently exhibit the relevant factors.

For a mathematically transparent illustration of this relationship,
consider a common mathematical approximation of a stochastic
selection process: the Luce-Shepard choice rule (Equation 1,
adapted from Luce, 1963; Shepard, 1957). Models often use this
equation to translate continuous activations into expected proba-
bilities for discrete outcomes (e.g., Dell, Burger, & Svec, 1997;
Gordon & Dell, 2003; Kruschke, 1992; Love, Medin, & Gureckis,
2004; McClelland & Elman, 1986; McClelland & Rumelhart,
1981; Nosofsky, 1986).

p�i� �
e�ai

�e�a
. (1)

Here, ai is the activation of outcome i, and � � 0 makes
selection more or less deterministic. To apply the rule to phoneme
selection, imagine a target phoneme, /r/, and two competitors, /l/
(similar) and /b/ (dissimilar), with activations, a/r,l,b/ � {1, 0.5,
0.25}, as might arise from a similarity-sensitive retrieval process.
From Equation 1, the probability of erroneously choosing /l/, p(/l/),
is a function of the activation of /l/, a/l/, compared to the summed
activation of all potential onsets. With the exponential function,
e�a, � scales selection to a total error rate: Larger �s yield more
“correct” selections, while smaller �s simulate more random se-
lection. Using the equation to derive probabilities of selecting /l/ or
/b/, given the target /r/, the similarity effect can be estimated as the
odds ratio for /l/ versus /b/ outcomes. Varying � produces greater
similarity effects when errors are less frequent (see Figure 2a).

Dell’s (1986) model also instantiates this principle: Reducing
activation noise (analogous to 	� in Equation 1) reduces error
rates, yielding stronger similarity effects (see Figure 2b). These
simulations also illustrate a downside to very low error rates:
Resultant effects are small as counts (see Figure 2c) and variable
as odds ratios (see Figure 2b). Noise similarly modulates phono-
logical effects in Dell, Schwartz, Martin, Saffran, and Gagnon’s

Figure 2. Models predict stronger odds-ratio similarity effects when
errors are rare. Panel a: With the Luce-Shepard choice rule, more deter-
ministic selections (larger �) yield stronger error effects. Following the
experiments, similar and dissimilar slip probabilities are calculated on
separate trials. Parameters: aTarget � 1, aSimilar � .5, aDissimilar � .25, � �
0:10. Panels b and c: Modulating activation noise in Dell’s (1986) model
produces similar behavior, additionally demonstrating that (Panel b) odds-
ratio effect estimates grow less precise when one has fewer data with which
to estimate them (i.e., at lower error rates) and (Panel c) higher error rates
produce numerically larger effects (at least until selection approaches
chance accuracy). Modulating phonological priming (not shown) has sim-
ilar effects. Each point represents a 3,000-trial replication, reflecting the
expected variability between similar-sized experiments. Parameters: lexi-
cal activation � 1; activation noise � U(0.2, 1.7); competitor phoneme
activation � 0.1; decay � 0.4;, connection weights � 0.2. Representing
inner speech (triangles) with less robust phoneme–feature connections,
weights set stochastically per subject: 0 � N(0.1, 0.1) � 0.2, the model
shows the same patterns with weaker effects.
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(1997) aphasia model and semantic effects in Oppenheim, Dell,
and Schwartz’s (2010) lexical retrieval model. In fact, every model
of production errors that I know of has the property that lower
error rates produce stronger odds-ratio effects. This connection is
ubiquitous because it is a direct consequence of the overdeter-
mined nature of speech errors. Factors that make production more
deterministic (accurate) produce models where errors are infre-
quent (thus yielding less precise estimates), but error patterns are
dominated by “good” errors (and, hence, greater odds-ratio ef-
fects). Factors that make production less deterministic lead to
greater numerical error effects (at least until randomness domi-
nates the error profiles) and, hence, more power to statistically
detect them. In the current experiments, these influences manifest
as larger phonemic similarity effects when slips are rarer but as
more power to detect the same-sized effect when slips are more
frequent. I claim that both articulated and unarticulated speech
show this tendency but that the weaker similarity effect in unar-
ticulated speech is easily overshadowed when production becomes
less deterministic. The following statistical analyses demonstrate
that the mediating effect of generalized error rate offers a reason-
able explanation for the major difference between the labs’ find-
ings, providing possibly the first empirical demonstration of this
long-recognized property of speech errors.

Method

This analysis used the same data set and basic methods as the
previous. Subjects remain nested within experiment (and items
remain nonnested), but I replace the nominal lab and experiment
predictors with a continuous measure of general error rate—
analogous to 	� in Equation 1. Nominal lab and experiment
predictors are omitted because, since the analysis offers a theoret-
ical explanation for the discrepancy that these identity-based fac-
tors describe, any predictor that successfully explains that discrep-
ancy would necessarily be highly collinear with identity-based
descriptions of it. For instance, general error rate hypothesizes a
particular ordering and spacing of data across experiments; if it
perfectly explained the variation across experiments, it would

provide exactly the same estimates as the nominal experiment
predictor. Because the previous section addressed the other fixed
effects, I restrict discussion to the general error rate predictor and
its interaction with phonemic similarity.

General error rate was calculated here as the proportion of Word
2 and Word 3 attempts per experiment that elicited neither target
errors nor correct productions, that is, 1 – p(correct) – p(target
error). Given the available data, this method provides an estimate
that is consistent across labs, reasonably independent of the target
error distributions within an experiment,6 and concordant with
ordinal rankings of the published total error rates (Kendall’s � for
concordance between general error rate and published per-
experiment error rates: overtly articulated speech, � � 1, p � .03;
unarticulated inner speech, � � 1, p � .03). However, the results
do not hinge on this particular estimation method,7 and other
methods appear to work equally well here (e.g., more focused
estimates of general onset slip rates, as in the simulations, may
prove more robust for cross-paradigm comparisons). Finally, al-
though Figure 2 suggests similarity effects should relate to target
error rate via a power function, I treat general error rate as a linear
predictor to avoid overfitting the limited data set and make the
resulting coefficients easier to interpret.

6 The mathematical relation between target error rates, calculated as
[target]/([target]  [correct]), and nontarget errors is inconsequential
here—calculating target rates as [target]/[total] minimizes the relation
while producing essentially the same coefficients, standard errors, p values,
figures, and so on. Note also that, mathematically, greater nontarget rates
would increase odds-ratio effects (per Footnote 2), contra the predicted
interaction.

7 The estimate should, though, collapse across conditions (e.g., similar-
ity). Estimating per experiment, not per subject or item, avoids sparse-
matrix artifacts and trivial autocorrelations (e.g., with infrequent target
errors, anything predicting more target errors may predict stronger effects
merely by reducing sampling error and floor effects).

Table 3
General Error Rate Regression Summaries

Odds ratio Coefficient � SE(�) z

Combined
Intercept 0.01 	4.68 0.09 	50.60
Similarity 1.76 0.56 0.08 7.38
Articulation 1.11 0.10 0.07 1.44
Similarity � Articulation 1.62 0.48 0.14 3.44
General Error Rate � 100 1.14 0.13 0.02 7.00
Similarity � (General Error Rate � 100) 0.93 	0.07 0.02 	3.09

Articulated
Intercept 0.01 	4.72 0.11 	44.05
Similarity 2.23 0.80 0.11 7.25
General Error Rate � 100 1.14 0.13 0.02 5.77
Similarity � (General Error Rate � 100) 0.93 	0.07 0.03 	2.15

Unarticulated
Intercept 0.01 	4.81 0.11 	44.94
Similarity 1.37 0.32 0.11 2.87
General Error Rate � 100 1.14 0.13 0.02 5.15
Similarity � (General Error Rate � 100) 0.94 	0.06 0.03 	2.01
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Results and Discussion

With 2,206 nontarget errors to estimate general error rates
(described in Table 1), more error-prone production generally
produced more target errors but weaker phonemic similarity ef-
fects (see Table 3). It is perhaps unsurprising that people reported
more target errors when reporting more nontarget errors8 (main
effect of general error rate: � � .13, 
2(1) � 42.43, p � .0001),
but this association does support the validity of using nontarget
errors to index the general error proneness of a study.

Figure 3 shows that larger general error rates in these exper-
iments were also associated with weaker similarity effects
(interaction: � � 	.07, 
2(1) � 9.86, p � .002). This Similar-
ity � Error Rate interaction provides a log-odds slope for the
regression lines in the figure, suggesting that a 1% increase in
general error rate (e.g., from 5% to 6%) is accompanied by a 7%
decrease in the log-odds similarity effect. This pattern holds for
both articulated (� � 	.07, 
2(1) � 4.96, p � .03) and
unarticulated speech (� � 	.06, 
2(1) � 4.30, p � .04)
individually, reinforcing earlier claims that the major quantita-
tive difference between the labs’ results lies in the size of the
main effect of phonemic similarity, not a simple main effect or
interaction with articulation. Visually, the similarity effects in
articulated and unarticulated speech form linearly separable sets
when paired by experiment because the theoretically motivated
inclusion of a mediating effect of overall error rate gives order
to the variation between experiments. This overall pattern is
easily simulated by a production model where inner speech
involves attenuated subphonemic connections (see Figures 2b–
2c). (The model also predicts a stronger Similarity � Error Rate

interaction for articulated speech—which the data only hint
at— but note that in the observed range of error rates, it does not
necessarily predict a large log-odds difference, particularly
when computing general error rate by collapsing across artic-
ulation conditions.)

Might this pattern extend to other data? Figure 4 plots sim-
ilarity effects for the articulated conditions, plus data from four
experiments using the SLIP procedure: Nooteboom (2005),
Nooteboom and Quené (2008, two experiments), and Oppen-
heim and Dell (2008, SLIP task).9 To compare across proce-
dures with different error profiles, the predictor is now the
overall probability of target errors, and following Nooteboom
and Quené target errors in the SLIP task are defined as primed-
for completed spoonerisms and anticipations.10 Though meth-
odological differences suggest caution in relating results across

8 Note this does not mean target error rates scale in fixed proportion to
nontarget error rates.

9 Oppenheim and Dell’s (2008) SLIP task used the same stimuli as their
tongue-twister task. Data from Nooteboom (2005) and Nooteboom and
Quené (2008) were provided by the authors, who recoded their 2005
similarity distinctions to match their 2008 ones. This is every published
experiment I know that tests comparable similarity distinctions, uses
consonant–vowel–consonant or consonant–vowel–consonant–consonant
stimuli, and codes specific primed-for onset substitutions.

10 Errors for SLIP tasks are experimenter coded. Adding SLIP perse-
verations would slightly increase target error counts (mostly for Oppen-
heim & Dell’s, 2008, SLIP data) without substantially affecting the plotted
effects.

Figure 3. Similarity effects in articulated (circles) and unarticulated (triangles) speech, plotted against general
measures of erroneous production. Regression lines depict fixed effects of the fitted model. The main effect of
similarity places lines above 1.0 on the y-axis. The Similarity � Articulation interaction specifies a superior line
for articulated speech. The Similarity � Error Rate interaction specifies the lines’ slope, suggesting similarity
effects are stronger when production is less error prone. CB&M � Corley, Brocklehurst, and Moat (2011);
O&D � Oppenheim and Dell.
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paradigms, the SLIP data fit the expected pattern surprisingly
well. There are three main points to note. First, the SLIP data
span a wide range of error rates and actually show the expected
Similarity � Error Rate pattern on their own. Second, the
unprimed conditions in three experiments (plotted separately)
elicited few target errors but particularly strong (and variable)
similarity effects—precisely as predicted by simulations with
Dell’s (1986) model (see, e.g., Figure 2b) and more generally
consistent with the notion that similarity more strongly con-
strains errors that lack support from other sources. Finally,
where Nooteboom and Quené removed time pressure and
warned participants about the task structure— changes intended
to maximize editing, which generally eliminated several irrel-
evant speech error causes—this reduced overall error while
eliciting the strongest similarity effect in their test data, follow-
ing the prediction that particular error causes should tend to be
more evident (in odds ratios) when other error causes contribute
less.

To recap, error rates were used here to estimate generalized
tendencies to produce target errors unrelated to the manipula-
tions of interest. The influence of general error proneness does
not preclude contributions from more specific error causes, but
by indexing the noise in the speech production process, it
provides a powerful, theoretically motivated resolution for a set
of seemingly discrepant findings and has predictive value be-
yond the current data. This point is separate from the power
issues discussed earlier because more accurate production pro-
duces fewer errors in the same number of trials, and practically
speaking, this makes the estimates more vulnerable to sampling
error and less able to support statistically detecting the same-
sized effect.

The relationship between error rates and error patterns is a
consequence of the fact that speech errors are simultaneously
determined by multiple causes. It does not compel a particular
feedback explanation and could certainly be described in terms of
strategic speech monitoring (e.g., overworked monitors are less
effective). Yet, as a domain-general phenomenon, it seems appro-
priate to posit a domain-general mechanism, and these patterns
naturally arise from the kinds of stochastic selection algorithms
that have played a crucial role in models of cognition for over half
a century.

Conclusion

The first analysis demonstrated a robust Similarity � Articula-
tion interaction, similar-sized in both labs’ data. Thus, the SAH is
supported by both data sets and generally speaking has strong
support. It also identified the major discrepancies between the
labs’ data: Corley et al. (2011) elicited stronger main effects of
similarity and fewer errors in general, making it easy to overlook
the Similarity � Articulation interaction.

The second analysis explained these discrepancies together as a
consequence of the overdetermined nature of speech errors. Pho-
nemic similarity effects, like other “good” error patterns, are
generally greater when error likelihood (indexing support from
other error-causing factors) is low. Both inner speech and overt
speech show this tendency, but the weaker similarity effect in inner
speech is more easily obscured as phoneme selection grows less
deterministic. These results are clearly predicted by a model where
inner speech involves attenuated phoneme–feature connections
and more generally suggest that successful speech error research

Figure 4. The Similarity � Error Rate interaction generalizes to new data. The regression line, fit only to the
articulated tongue-twister data (circles), uses a power function (based on the simulations in Figure 2). Similarity
effects from several SLIP tasks (squares) follow the same function.
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requires finding a sweet spot between too much randomness and
not enough data.

Corley et al. (2011) questioned Oppenheim and Dell’s (2008,
2010) claim that inner speech involves less robust access to sub-
phonemic information. The data however, fully support that claim
by showing that phonemic similarity effects are consistently
weaker in unarticulated inner speech.
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