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Abstract

In their paper “Do Bilinguals Automatically Activate Their Native Language When They Are Not Using

it?”, Costa, Pannunzi, Deco, and Pickering (Cognitive Science, 2017) proposed a reinterpretation of Thierry
and Wu’s (2004, 2007) finding of native language-based (Chinese, L1) ERP effects when they tested Chi-

nese–English late bilinguals exclusively in their second language (English, L2). Using simulations in a six-

node Hebbian learning model (three L1 nodes, three L2 nodes), Costa et al. suggested that form overlaps in

L1 between otherwise unrelated words create a persistent relationship between their L2 translations. In this

scenario, words in the nascent L2 lexicon overlapping in their L1 translations would become linked during

learning because of the form overlap in L1; once the L2 words are learned, the direct link between them

would be sufficient to generate robust, apparently “L1-mediated” priming without requiring any activation

of L1 translations. Costa et al. contend that links between L2 words remain beyond the learning phase, even

after links to L1 representations have been severed, and thus that their model affords an alternative account

to (but not a rebuttal of) Thierry and Wu’s claim of language non-selective activation—or automatic activa-

tion of translation equivalents—in late bilinguals. In this response, we build on Costa et al.’s original simu-

lation code, showing that it can only reproduce L1-independent priming when implementing the L1

disconnection in their particular way. By contrast, when severing inter-language connections bidirectionally,

their model fails to retain any sizeable influence of L1 form overlap on L2 activations. The model is not the

theory, however, and we discuss several issues that would need to be addressed in further attempts to model

language non-selective activation in late bilinguals.
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1. Introduction

When bilinguals use their second language, are they able to completely avoid access-

ing their native language? After decades of reports of cross-language effects in bilin-

guals (e.g., Brysbaert, 1998; De Groot & Nas, 1991; van Hell & Dijkstra, 2002; Duyck,

2005; Duyck, Assche, Drieghe, & Hartsuiker, 2007), Thierry and Wu (2004, 2007)

demonstrated that late Chinese–English bilinguals automatically and unconsciously acti-

vate native translation equivalents when reading L2 English words using event-related

potentials (ERPs) in an experimental context entirely uncontaminated by L1 Chinese.

On each trial, participants read or heard two English words presented in a sequence, like

“train” and “ham,” and reported whether or not these words were related in meaning.

Half of the word pairs had a hidden relationship through Chinese translations: For

instance, “train” and “ham” translate into huo che and huo tui, in Mandarin Chinese,

and thus share their first syllable. Although bilingual participants failed to consciously

detect this link and although no sign of it was found in their reaction times or accuracy

data, ERP data revealed the priming effect that one would expect if they had accessed

the translation of the English words in their native language Chinese. Thierry and Wu

(2004, 2007) thus concluded that late bilinguals automatically and unconsciously access

L1 translation equivalents when processing L2 words (see also Wu & Thierry, 2010,

2012a,b; Spalek, Hoshino, Wu, Damian, & Thierry, 2014; Wu, Cristino, Leek, &

Thierry, 2013).

In a paper built around a Hebbian learning model, Costa, Pannunzi, Deco, and Picker-

ing (2017) recently suggested an alternative explanation: Rather than revealing ongoing

contributions of L1 to L2 processing, Thierry and Wu’s findings may simply reflect a par-

ticular way that L1 shaped L2 at a much earlier stage during the L2 learning process.

Given that huo che and huo tui sound the same in Mandarin, then maybe their lexical

representations will tend to be activated at the same time in Mandarin, and because neu-

rons that fire together wire together, huo che and hui tui will become linked. And then

their respective translations in English, “train” and “ham,” will also end up becoming

linked to one another, within L2. Thus, one might not actually need to access L1 to get

L2 effects that look like they arise from L1 overlap.

Costa et al.’s (2017) proposal offers an intriguing alternative explanation for Thierry

and Wu’s findings, and the choice to implement it as a computational model brings a

laudable rigor to their approach. We were curious about some of Costa et al.’s model-

ing decisions and how much the simulated results may depend on such implementa-

tion details. We also wondered how their approach might be extended to better

approximate experimental tasks used when testing human participants, such as seman-

tic judgments. Therefore, we wrote to the authors who kindly shared with us the orig-

inal code they used for their simulation. The present paper deals with three issues

relating to Costa et al.’s approach: (a) we provide a detailed account and small exten-

sion of Costa et al.’s model, finding that, when L1 and L2 are actually bidirectionally

disconnected, it fails to provide a convincing alternative for our empirically observed

phenomenon; (b) we discuss some limitations of Costa et al.’s approach to simulating
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bilingual language development (abrupt disruption of the links between L1 and L2,

lack of consideration for unlearning); (c) we introduce two further conceptual issues

that are important to situating any such model in the wider context of bilingual lan-

guage use (what we know about bilingual lexical access and the communicative func-

tion of language). Even though learning a second language may lead to links existing

between L1 lexical forms to be inherited by L2 representations, language non-selective

access (i.e., activation of native language translation equivalents) in late bilinguals

remains the most parsimonious account of what happens in the mind of late (Chi-

nese–English) bilinguals when they are exposed to second language words, whether

spoken or written.

2. The model as conceived and tested by Costa et al.

2.1. Architecture

The model contains six nodes, each representing one word. Three nodes represent

words in L1 {trainM, hamM, appleM} and three represent words in L2 {trainE, hamE,

appleE}. Every node is connected to every other node, with a weight initialized as 0. To

represent L1 phonological overlap between trainM and hamM, however, the weight of the

connection between them is initialized as cPh (see Table 1 for parameter descriptions).

Following a standard convention in Hebbian networks, where nodes are assumed not to

carry over activation between timesteps, connections from each node to itself are main-

tained at zero.

Table 1

Parameters of Costa et al.’s modela

Parameter

Implemented

Value Description

max(s) 30,000 Number of training trials

Ω 6,000 Asymptotic scaling constant (learning drops off as a function of 2/(1 + exp(s/Ω)))
mH 40 Input activation for the L2 target word

mH2 15 Input activation for the L1 translation word

mVL 4 Input activation for all other words

Dm 2 Variability in input activation

cPh 0.12 Connection weight imposed between phonologically similar words in L1

aL 0.001 Learning rate

ΘL 20 Threshold for learning and the mean of a sigmoidal function to scale weight

changes

bL 6 Standard deviation for a sigmoidal function to scale weight changes

Notes: aThe values listed here are those implemented in the simulation of Costa et al. See Costa, A., Pan-

nunzi, M., Deco, G., & Pickering, M. J. (2017). Corrigendum for: Do bilinguals automatically activate their

native language when they are not using it? Cognitive Science, https://doi.org/10.1111/cogs.12577.
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2.2. Activation

Activation begins with a vector of external inputs to nodes {trainM, hamM, appleM,

trainE, hamE, appleE}, with values reflecting the parameters {mH, mH2, mVL}. For example,

when cuing the English word train, the nodes {trainM, hamM, appleM, trainE, hamE,

appleE} would take input values of {mH2, mVL, mVL, mH, mVL, mVL}, respectively. On each

trial, this input vector is increased by a vector of uniformly distributed random values,

with values between 0 and Dm; the initial activation of each node is thus simply its noisy

net input. Thereafter, the initial activation of each node i at each time step t is assumed

to be the sum of all of the other nodes j in the network at the previous time step, times

the weight of their connections to that node wij.

ait ¼
X

wijajt�1

Activation then continues to spread until the network settles into a stable state. For

any vector of initial activations, At0 , and matrix of weights, W, this stable state At1 is

assumed to be approximated by minimizing the error for an implied set of equations:

At0 ¼ lsqr W � identity matrix½ �ð Þ;�Að Þ

2.3. Learning

For each trial s in 1: max(s), after the network has settled, the weights of all connec-

tions wij, into each node i that has exceeded an activation threshold, ΘL, are modified

according to the following equation:

wijsþ1
¼ wijs þ x�U 0;aLð Þð Þ � normcdf ajs ; l ¼ HL; r ¼ bL

� �� 1� wijs

� �� 2

1þ e
s
X

� �

The first component of this equation specifies that the old weight should serve as the

basis for the new weight. The next component specifies that the amount of the weight

change should be scaled according to a uniformly distributed random number in the range

[0, aL]. The next component specifies that the amount of the weight change should be

scaled according to a [0,1] sigmoidal transformation of the sending node’s activation (im-

plemented as the probability of observing a value less than aj in a normal distribution

with mean ΘL and standard deviation bL, e.g., resulting in a value of 0.5 when aj = ΘL,

and 0.9772 when ai = ΘL + 2 9 bL). The next component specifies that any weight

should asymptote around a maximum value of 1. The final component specifies that

weight changes should be scaled such that they will be very large when training begins,

before asymptoting toward zero (e.g., for Ω = 6,000, on training trials s = {1, 10,000,
20,000, 30,000}, this component would scale any weight change by {0.9999, 0.3177,

0.0689, 0.0134}); assuming that the 30,000 training trials represent the Thierry and Wu’s

4 G. Oppenheim, Y. J. Wu, G. Thierry / Cognitive Science (2018)



participants’ pre-experiment exposure to English, this component implements an assump-

tion that they would learn new English translations of Mandarin words 100 times more

slowly as college students than they did when beginning to learn English as children.

Thus, the learning rule specifies that weight changes should only occur when the

receiving node is active above some threshold, but also be greater when the sending node

is more active. Although the learning rule allows for randomness in the extent of a

weight increase, it nonetheless specifies that connection weights can never decrease; any

temporary co-activation of two nodes is assumed to form a connection between them that

will persist forever. The rule also specifies that connection strengths have some upper

limit beyond which they cannot remain, perhaps reflecting a biological saturation point.

And finally, the rule further specifies that weight changes must decelerate as the system

ages, enforcing something like a “critical period.”

2.4. Simulations

2.4.1. Training
Exactly replicating Costa et al.’s implementation, the network was initialized as speci-

fied above, and trained for 30,000 trials. On each trial, one L2 word was randomly

selected as the target (thus, each L2 word was trained approximately 10,000 times); its

node received mH units of input activation, its L1 translation received mH2 units of activa-

tion, and all other nodes received mVL units of input activation. The settling state of the

network was then estimated as described in section 2.2, and connections were modified

as described in section 2.3, producing a trained network with connections as depicted in

Fig. 1A.

2.4.2. L1-intact simulation (Fig. 1A)
Replicating Costa et al.’s L1-intact simulation, as the network’s 30,001st trial, one L2

word was randomly selected as the target and activated just as previously specified for

training: its node received mH units of input activation, its L1 translation again received

mH2 units of activation, and all other nodes received mVL units of input activation. The

settling state of the network was then estimated as described above, with the resulting

activation of each node recorded (as the basis for Costa et al. Fig. 2B), but no further

weight changes were applied. This testing procedure was applied 8,000 times, so each L2

word was tested approximately 2,667 times.

2.4.3. L1-“disabled” simulation (Fig. 1B)
Replicating Costa et al.’s L1-disabled simulation, first, all connections to L1 nodes

from L2 nodes (L2 ? L1) were set to 0, implementing a restriction such that an L2 word

cannot directly activate its L1 translation, nor any other L1 word. Critically, however, in

Costa et al.’s L1-disabled simulation, L1 words continued to be fully activated and all

connections to L2 from L1 (L1 ? L2) remained intact (i.e., not set to 0); we worry that

some readers may have misunderstood these important details when Costa et al. described

their simulation as having “removed all L1 representations” (p12) and “restricted
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Fig. 1. Schematic of the cross-linguistic pattern-completion model as implemented in Costa et al.’s L1-con-

nected simulation (A), their L1-disconnected simulations (B), and our L1-fully disconnected simulation (C).

Line thickness approximates connection strength on a logarithmic scale, completely omitting connections of

weight 0. Overlays depict activation flow through major connections supporting “ham” over “apple.” Panels

A and B are identical because Costa et al.’s L1 disconnection only removed connections from L2 to L1,

which never actually developed in the first place.
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activation to only one language” (p. 13), thereby “removing any on-line influences

between L1 and L2” (p. 7), and having effectively “turned the model monolingual”

(p. 13).

Then the testing procedure continued exactly as in the L1-intact simulation and Costa

et al.’s L1-disabled simulation. As the network’s 30,001st trial, one L2 word was ran-

domly selected as the target and activated just as previously specified for training: its

node received mH units of input activation, its L1 translation again received mH2 units of

activation, and all other nodes received mVL units of input activation. The settling state of

the network was then estimated as described above, with the resulting activation of each

node recorded (as the basis for Costa et al. Fig. 2B), but no further weight changes were

applied. This testing procedure was applied 8,000 times, so each L2 word was tested

approximately 2,667 times.

2.4.4. Our L1-disabled simulation (Fig. 1C)
First, all L2 → L1 connections were set to 0, implementing a restriction that an L2

word cannot directly activate its L1 translation, nor any other L1 word. In our simulation,

though, all L1 → L2 connections were also set to 0, implementing a corresponding

restriction that an L1 word cannot directly activate its L2 translation either (nor any other

L2 word).

Then the testing procedure continued exactly as in Costa et al.’s L1-disabled simula-

tion, except that in our simulation, the L1 translation received only mVL units of input
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Fig. 2. Simulation results. (A)–(D) replicate results those reported by Costa et al. (2017). (A) Connection

strength to train grows over 10,000 training trials. (B) Pre-training L2 lexical activation. (C) Post-training L2

lexical activation. (D) Post-training L2 lexical activation, after severing just L2?L1 connections, as in Costa

et al.’s L1-“disabled” simulation. (E) Post-training L2 lexical activation, after severing all between-language
connections, as in our L1-disabled simulation.
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activation (on the assumption that mVL represents a resting level of activation for all

nodes) instead of the full mH2 units of activation applied in Costa et al.’s L1-disabled sim-

ulation. Thus, as the network’s 30,001st trial, one L2 word was randomly selected as the

target and activated: its node received mH units of input activation, and all other nodes

(including its L1 translation) received mVL units of input activation. The settling state of

the network was then estimated as described above, with the resulting activation of each

node recorded (as the basis for Costa et al. Fig. 2B), but no further weight changes were

applied. This testing procedure was applied 8,000 times, so each L2 word was tested

approximately 2,667 times.

2.5. Results

Results of our simulations are presented in Fig. 2. As they should, our Panels A–D clo-

sely resemble Panels A–D in Costa et al. Fig. 2. They are, after all, generated from the same

code, using the same set of parameters. As in Costa et al.’s simulations, they demonstrate

that the model learns its connections through experience (Fig. 2A), and although the model

does not associate the English words “train” and “ham” when it is first initialized (Fig. 2B;

Cohen’s d < 0.01 for the difference between “ham” and “apple” activations), its experi-

ence-driven learning leads it to activate the English word “ham” more than the English word

“apple” when prompted by the English word “train” (Fig. 2C; Cohen’s d = 0.37). As illus-

trated in Fig. 1A, activating “train” and “huo che” in the L1-intact simulation activates

“ham” via a set of L1-dependent pathways (“huo che” → “huo tui” → “ham,” “huo che” →
“ham.” and “huo che” → “train” → “ham”) as well as an L1-independent pathway (“train”

→ “ham”). And as in Costa et al.’s L1-disabled simulation, these same pathways (Fig. 1B)

continue to activate the English word “ham” when activating the English word “train” and

its Mandarin translation, despite the connection from the English word “train” to its Man-

darin translation having been severed (Fig. 2D; Cohen’s d = 0.37).

However, Costa et al.’s central claim was not merely that learned associations cause the

English words “train” and “ham” to become co-activated, but rather that such co-activation

could emerge entirely from learned associations within English, and thus that the empirical

observation of a co-activation would not constitute evidence that late bilinguals activate their

L1 when processing words in their L2. Therefore, the critical test of Costa et al.’s theoretical

claim is a test that they did not conduct: What happens to the English word “ham” when we

activate the English word “train,” but, as illustrated in Fig. 1C, we (a) refrain from activating

its Mandarin translation and, crucially, (b) sever connections both to L1 from L2 and to L2

from L1? Fig. 2E shows that, under these conditions, the phenomenon that Thierry and Wu

claimed as evidence for necessary L1 activation essentially disappears (Cohen’s d = 0.046).

Without activating L1, and without allowing L1 to activate L2 and L2 to activate L1, the dif-

ference between the activations of the English words “ham” and “apple” is quite minimal,

even in a model that was specifically designed to produce such a difference.

One may argue that our L1-disabled simulation still shows some hint of an effect: in

Fig. 2E, the mean activation of ham (4.98) is about 3% larger than the mean activation

of apple (4.82). But this difference is very weak, and if Costa et al.’s model allows for
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reasonable signal-to-noise ratios, that difference could hardly have enabled several repli-

cations of the effect (e.g., Wu & Thierry, 2010, 2012a,b; Wu et al., 2013). Thus, although

a fully disconnected implementation of Costa et al.’s model can lead to lasting L1-based

associations between L2 words without persistent L1 activation, any such L1 associations

would be far subtler than its proponents have claimed.

3. Suggestions for simulation improvements

The model is not the theory, however, and it is possible that slight adjustments of

Costa et al.’s model, or a different implementation of the same basic ideas would gener-

ate stronger L2-based effects of L1-derived associations. Therefore, it is important to con-

sider some of the model motivating ideas, which it would necessarily share with any

alternative implementation.

3.1. Incorporating mechanisms for unlearning

One curious aspect of Costa et al.’s simulation is that the model stopped learning imme-

diately after disconnecting L1 from L2. What would happen if the model continued to mod-

ify its connections based on experience in its L1-disconnected state? Would the claimed

connections within L1 persist, or would they fade away? The answer appears to rest on

aspects of the model that lack both strong theoretical and computational support. Most

important among these is the model’s implementation of Hebbian weight increases as its

sole basis for synaptic changes. Hebbian learning is a family of approaches that are elegant,

neurally plausible, work on strictly local information, and have proven extraordinarily suc-

cessful at unsupervised associative learning. Many recent advances in machine learning, for

instance, employ learning rules that can be considered part of the Hebbian family. As such,

the selection of some Hebbian learning rule may seem like a simple, theory-neutral

approach, even though it actually implements a very strong assumption: The model can only

learn through excitatory connections, only ever strengthening them. Elsewhere, mechanisms

for reducing association weights are common to most computational modeling frameworks

(e.g., Oppenheim, Dell, & Schwartz, 2010; Rescorla & Wagner, 1972; Rumelhart &

McClelland, 1986), and researchers have long recognized their value in Hebbian learning

systems (e.g., Hopfield, 1982), specifically increasing a system’s stable storage capacity.

Such association reduction can be implemented in many ways (e.g., unlearning, weight

decay, weight normalization), but all solve the same basic problem arising from the Hebbian

weight-strengthening rule: Whenever two patterns overlap, a Hebbian network queried with

part of one will complete both patterns. If any node is erroneously activated, continued asso-

ciation learning will add that node to the pattern, snowballing until any node will activate

the entire network, thus catastrophically failing to recover any individual pattern (in biologi-

cal networks, such activation might correspond to a seizure).

In fact, Costa et al.’s simulation of learning of L1-mediated associations within L2 pro-

vides a snapshot of such a snowballing effect in progress; only its hard-coded critical period
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function prevents its 30,000 training trials from resulting in a superposition catastrophe,

where it would be unable to distinguish between train and ham.1 Like other Hebbian sys-

tems, Costa et al.’s model could thus benefit from incorporating some mechanism for

unlearning, but doing so would entirely eliminate its account of Thierry and Wu’s data,

because such functions would stabilize the network by unlearning precisely the kinds of spu-

rious associations that underlie the account. Thus, omitting of a mechanism for unlearning

may seem like a mere simplification, but it is in fact crucial to Costa et al.’s theoretical

account, and any similar account would need to make the same omission.

3.2. Incorporating more gradual L1 disconnection

It is difficult to conceptualize a real-life equivalent of Costa et al.’s abrupt testing method

—suddenly dismissing connections from L2 to L1 and probing the state of the obliterated

network. Although lesioning a connection is a common way to assess its contributions,

Costa et al.’s proposal goes further, claiming not only that L2-internal links may contribute

to L1-based effects, but that their inter-lingual lesioned network may actually represent an

unimpaired late bilingual’s normal state. At the least, it seems rather implausible that a sim-

ulation abruptly lesioning L1 representations can provide a realistic account of unimpaired

bilinguals’ transition from an earlier to a later stage of L2 acquisition.

Note that the need for more gradual L1 disconnection is not a mere implementational

detail, because it should clearly interact with any implemented unlearning mechanism,

reducing and eliminating Costa et al.’s hypothesized within-L2 connections. In fact, Costa

et al. themselves suggest that, if the connections underlying their effect are “not refreshed

regularly, [they] may disappear via [an unimplemented mechanism for] depotentiation” (p.

15). Thus, although both their and our simulations suggest that a within-L2 basis for the

effect may briefly persist after abruptly severing L1↔ L2 connections, even according to

Costa et al.’s own account, it requires regular “refreshing” via normally intact L1↔ L2 con-

nections. As L1↔ L2 connections gradually weaken, they thereby lose their ability to

refresh hypothesized within-L2 connections via their stated Hebbian learning mechanisms,

and thus reduce their ability to account for Thierry and Wu’s empirical findings. In other

words, even according to Costa et al.’s own internal logic, one can only account for L1-

based effects without L1↔ L2 connections if those connections are usually intact.

4. Broader conceptual issues

4.1. Post hoc ad hoc modeling

Although model-building rarely happens in a vacuum, without consideration of empiri-

cal data, there is a process that distinguishes theory-driven cognitive modeling from

results-driven AI. The first step aims to characterize the goal of a process (Marr’s, 1982,

“computational theory” level), and this is perhaps why cognitive models usually focus

characterizing performance on particular tasks with well-defined inputs and outputs. Costa
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et al.’s approach clearly fails to define a task (simulating effects during semantic judg-

ments without a semantic layer; more on this below), and it is not immediately clear what

challenge the modeled system might be trying to solve by storing direct excitatory links

between unrelated words within a language.

The second step is to implement a guess about specific architectures and algorithms

that the mind might use to achieve its processing goal. For instance, if we assume the

model’s goal is to associate strongly activated L2 words with their strongly activated L1

translations, using Hebbian learning to build these associations might be a reasonable

approach. What is not clear is why such association-building processes should also apply

to weakly2 co-activated words within a language, or why such associations should always

increase and never decrease. One might argue that there is considerable evidence for

within-language excitatory lexical associations, but that argument misses a crucial point:

Those within-language lexical associations tend to be based on distributional information

and transitional probabilities, as might be modeled using a simple recurrent network (e.g.,

Elman, 1990; Chang et al., 2006) to predict upcoming words in a sequence. The kind of

within-language lexical association that Costa et al. claim, on the other hand, seems to

exist only to artificially account for Thierry and Wu’s data.

4.2. Compatibility with empirical data

In Costa et al.’s original model, after L2 is fully acquired, L2-to-L1 connections are no

longer available while L1-to-L2 connections remain active. This would imply either

(a) unbalanced connections between two lexica, with stronger links from L1-to-L2 than

from L2-to-L1 or (b) language-selective access in an integrated lexicon when reading in L2

but not when reading in L1. Neither of these scenarios is compatible with empirical data to

date (for reviews, see Brysbaert & Duyck, 2010; Dijkstra & van Heuven, 2002; Grainger,

Midgley, & Holcomb, 2010; Kroll & Dijkstra, 2002; Kroll, van Hell, Tokowicz, & Green,

2010). Furthermore, a fully disconnected implementation of Costa et al.’s model also

implies either (c) two separate lexica, or (d) one integrated lexicon with entirely language-

selective lexical access. However, neither of these options can account for the classic cross-

language orthographic/phonological neighborhood effect (see, e.g., Dirix, Cop, Drieghe, &

Duyck, 2017). Although L2 words with several orthographic neighbors in L1 may end up

linked in L2 through learning, under the fully disconnected model they should not compete

for selection because their word forms do not overlap in L2. Hence, although it is reasonable

to assume that L2 words may become linked during L2 acquisition because of links between

representations existing in L1, partial or full disconnection of L1 would introduce new

inconsistencies with a wider array of empirical data.

4.3. Omission of semantic representations

Returning to the original human data, recall that it was generated in the context of a

semantic judgment task. Costa et al.’s model, however, omits a fundamental aspect of

language which not only seems highly relevant to the behavioral task but which would
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likely elicit very different results: Semantics. For example, the L2 word “ham” would

become validly associated with words like “cheese” and “toast” as a learner of English

reads sentences like “he likes ham and cheese on toast.” It is thus likely that—in the

course of learning English—words like “ham” will become associated with words like

“toast” and “cheese” more than with “train” because of the lack of semantic association

between the former and the latter. Indeed, semantically unrelated English words that over-

lap in their corresponding Chinese translations would hardly ever see the link between

them reinforced during learning as regards meaning acquisition or use, and the effect pro-

duced should therefore be much weaker than that of valid and useful within-L2 associa-

tions (just like the barely noticeable effect in our new L1-fully disabled simulation). In

our empirical investigations, however, the form overlap effect was about half the size of

the semantic relatedness effect (e.g., ~1 vs. ~2 lV in Thierry & Wu, 2007) rather than a

small fraction of it.

In other words, even though a computational model can be built to simulate connec-

tions between pools of neurons on the exclusive basis of form relationship across lan-

guages or lexical representations, such a model bears no obvious relationship with

language learning in real-life circumstances without taking into account semantic links

between words. Thus, it is difficult to imagine how the connection between “train” and

“ham,” once disconnected from L1, would remain as strong as that between words such

as “wood” and “carpenter,” which also have a form overlap through L1 (mu tou – mu
jiang) but are strongly related semantically in both languages. It thus seems highly likely

that word meaning interacts with form overlap between words during learning, a finding

that stands in contrast with the lack of interaction observed empirically (see in particular,

Thierry & Wu, 2007). This point is particularly relevant considering the fact that most of

the experiments conducted by Wu and Thierry involved semantic tasks (i.e., relatedness

judgment). A model solely aimed at simulating form overlap effects is thus, at best,

incomplete and seems inappropriate as an account of empirical data obtained in an exper-

imental testing context centered on semantic processing.

5. Conclusion

In sum, although Costa et al. (2017) propose an intriguing account of Thierry and

Wu’s (2004, 2007) L1 effects in late bilinguals’ L2 comprehension, we find their expla-

nation untenable for the following reasons: (a) a model of semantic judgments that lacks

semantic representations is, at best, incomplete; (b) the mere fact that Hebbian learning

could lead to acquiring certain associations does not imply that it must; (c) Testing the

model after completely—as opposed to partially—severing the links to and from L1 virtu-

ally abolishes any effect of form overlap in L1; and, finally, (d) the fact that unlearning

would eliminate the hypothesized within-L2 connections, unless they were regularly rein-

forced via intact L1↔ L2 connections, implies that disconnection cannot be the normal

state.
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Notes

1. This can be verified by, for example, increasing Ω from 6,000 to 15,000, or by

simply running the model with its originally published set of parameters.

2. In fact, Costa et al.’s model includes a “learning threshold” parameter, ΘL, to

reduce its learning of weak associations. Increasing this threshold, ceteris paribus,

produces a model that learns to associate translations without learning within-L2

connections.
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