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Abstract

Speech errors and naming latencies provide two complementary sets of behavioural data for understanding
language production processes. A recent analytical trend – applied to intact and impaired production alike –
highlights a link between specific features of correct picture naming latency distributions and the retrieval
processes thought to underlie them. Although chronometric approaches to language production typically
consider correct response times in isolation, adequately accounting for their distributions in error-prone
situations requires also considering the errors that sometimes censor them. In this paper, I illustrate by
simulation how excluding incorrect word retrievals predictably alters observed distributions of correct naming
latencies. To the extent that naming errors impose a stochastic deadline on successful production, their
censoring should tend to reduce the mean, variance, and skew of observed latencies for correct responses,
relative to the uncensored underlying distribution.

Introduction

Imagine word retrieval as a series of races between a cat and a dog, where we’re trying to discover what
makes the cat run faster or slower, but can only record its winning times. We suspect that its fear of bulldogs
might make it faster, and being intimidated by greyhounds might make it slower. But our races include two
restrictions. First, each race lasts only 10 seconds at most; if the cat gets distracted, or injured, or quarrels
with the dog, we can’t record the cat’s speed. Second, if the dog wins a race, the cat immediately gives up,
so we can’t record the cat’s speed in this case, either. Thus recording only the cat’s winning times filters its
slower times from the dataset, changing our observed distributions. Racing against a (fast) greyhound, the
cat will therefore seem exceptionally fast because we’ll only record its times on those races where it outran a
greyhound. Racing against a (slow) bulldog, the cat will seem much slower because we’ll record its times in
almost every race, even on its ‘off’ days. Although the cat may be spurred on by the bulldog, or discouraged
by the greyhound – and these factors may even affect its distributions in unique ways – it will be difficult to
distinguish their effects from the consequences of our recording biases.

Speech errors and naming latencies provide two complementary sources of behavioural data that any satisfying
theory of language production must address. Because speakers produce both errors and correct responses in
much the same way, errors can reveal processes, representations, and brain regions that normally subserve
successful production; for instance, a cat → rat slip is more likely than a cat → {mouse||mat||isotope||ngik} slip,
reflecting numerous semantic and phonological constraints. But because errors also – at least – reflect instances
where production has somehow gone awry, it is useful to have converging evidence from measurements of
correct productions: naming latencies. Naming latencies clearly reveal something about a word’s accessibility:
when producing a word is easier, speakers do it faster, revealing specific factors that facilitate and inhibit
production. And because researchers typically restrict their naming latency analyses to correct productions
– excluding any error trials – we often assume that latencies’ means and distributions provide untainted
windows onto successful production processes; this assumption is the focus of the current paper.

A simple difference in mean naming latencies is not as directly informative as the differences in probabilities and
types of errors that form the traditional mainstay of neuropsychological investigations, but recent applications
of distribution-fitting analyses (e.g. Anders et al., this volume; Roelofs & Piai, 2017; Scaltritti, Navarrete,
& Peressotti, 2014) hold the promise of identifying specific aspects of decision and response processes that
underlie such RT differences. The basic idea is that one can describe the shape of an RT distribution in
terms of a small number of free parameters within a fixed mathematical formula. These are essentially
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data compression algorithms (in the same way that an *.MP3 or *.JPG is a compressed version of a larger
computer file), but such distribution-fitting approaches are distinguished by an assumption that, because the
algorithm involves fitting a plausible generative framework1 to an observed distribution, the parameters that
best describe the distribution have psychologically meaningful interpretations.2 While increased attention
to RT distributions is clearly a positive development, two major questions when interpreting distributions
from an impaired system (or speaker) are how faithfully they reflect the same underlying processes as in an
unimpaired system, and what kinds of systematic differences the impairment might introduce.

Although models of production have long addressed speech error (e.g. Dell, 1986; Fromkin, 1971) and naming
latency (e.g. Levelt, Roelofs, & Meyer, 1999) data separately, recent accounts have begun integrating the two.
For instance, Oppenheim, Dell, & Schwartz’s (2010) Dark Side model combined an evidence-accumulation
mechanism for lexical selection with an incremental learning process to demonstrate how the same implicit
learning and unlearning of meaning-to-word associations could make unimpaired participants slower to name
pictures correctly, and cause impaired participants to name them incorrectly or not at all. By quantitatively
fitting a similar evidence-accumulation framework to humans’ correct naming latency distributions (modeling
just a single accumulator, without learning), Anders and colleagues’ psychometric approach (2015; this
volume) usefully identifies specific parameter changes that may underlie observed naming latency differences;
a goal of process models like the Dark Side is to explain why some3 such parameter changes might occur. Of
course, addressing both errors and response times in separate studies or populations is an important first
step, but truly integrating them requires better understanding their interplay within a single set of data.

An obvious example of this interplay can be found in omission cutoffs. Omission errors are operationally defined
as failures to respond within a reasonable timeframe, which might be 2000ms for unimpaired participants,
or 20,000ms for people with language impairments.4 Because we define these outcomes in terms of their
timecourse, classifying a slow would-be-correct response as an omission clearly affects our naming latency
analyses: with a 2000ms deadline, a 1999ms cat! increases the observed latencies’ mean and variance, while a
2001ms cat! – counted as an omission – does not.

So how do errors of commission affect latencies for correct responses? To address this question, we need a
model of how such errors occur. The following minimal model allows us to focus on the interplay of naming
errors (e.g. cat → {dog||tiger ||kitten}) and correct naming latencies, generalising to any reasonable account of
production. This model simply assumes lognormal distributions of expected response times for target words
and possible alternative names (or competitors) – with minimal consideration of their generating processes –
and then considers how the observed RTs for correct responses change when alternatives stochastically emerge
instead. Appendices A and B, respectively, demonstrate similar relationships when generating distributions
via empirically derived parameters from fitted Shifted Wald and ex-Gaussian models.

Simulations

Starting with the assumption that a speaker semantically activates many candidate words, but ultimately
selects just one for production, we can characterise word retrieval as a race between these candidates, where
the most activated candidate will eventually win, and its retrieval time will depend, at a minimum5, on
the strength of its own activation (e.g. Oppenheim et al, 2010). The target word should usually be more
activated than alternative names, but internal or external sources of variance can occasionally lead to it being
underactivated and an alternative name overactivated, such that the alternative emerges instead; in this
situation, we can consider such errors’ effects on observed response time distributions for the target.

Formalising this approach, imagine that target word activations on 100,000 trials are normally distributed,
1Or an approximation thereof, in the case of ex-Gaussian analyses.
2In fact, the classic approach of comparing distributions in terms of means and variances is usually applied in this same way,

assuming that differences in these parameters reflect particular psychological quantities.
3Whereas psychometric models typically collapse across processes and levels of representation to explain the outcome of an

entire stimulus-to-response mapping, process models limit their scopes to consider specific processes and levels in more detail.
4Self-reported ‘don’t know’ responses present a similar case, except that the deadline is stochastically self-imposed.
5For computational simplicity, this exercise implements noncompetitive selection, but all claimed patterns remain if assuming

competition.
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with a mean of 1 and a standard deviation of 0.4. For these same 100,000 trials, a single strong alternative
tends to be slightly less activated, with a mean of 0.5 and a standard deviation of 0.4. Assume that the time
it would take for any word to reach a selection threshold, considered individually, is simply the exponential
of its negative activation (e−a), approximating the duration of an evidence-accumulation decision process
(cf. Heathcote & Love, 2012). Scaling this value by one constant and adding another (1000 × e−a + 400)
adjusts it into a plausible millisecond response time. Considered independently, 100,000 trials cuing the target
and 100,000 cuing the alternative predict the log-normal RT probability densities depicted in Figure 1a.

But because a person can only select one word on each trial, we assume that, on any trial where an alternative
reaches threshold first, it preempts the target, censoring the target’s RT from the observed distribution.
By convention, we analyse only RTs for correct responses, so eliminating 18,767 (18.8%) error trials (where
the alternative emerged instead) yields the modified probability density function shown in Figure 1b. Two
remarkable changes emerge. First, because naming errors stochastically preempt slower correct responses,
much like omission errors, they reduce mean RTs for the correct responses that remain.6 Thus, within a single
dataset, factors that promote errors may be counterintuitively associated with RT facilitation7, producing
apparent dissociations between error and RT effects despite a common source. Second, naming errors more
generally reduce the variance of correct RTs, by reducing the distribution’s positive skew. Table 1 confirms
the intuition that such censoring affects multiple parameters when applying two common distribution-fitting
analyses to the correct RTs. What is remarkable about this simulation is that these changes in correct RT
distributions emerge without any underlying change in the target activation nor its retrieval process, which
analyses restricted to correct RTs are commonly assumed to recover. Thus, correct RTs, in the presence of
error effects, do not simply reflect the correct functioning underlying error-free production, but also reflect
predictable biases from non-random data loss.

Similar biases emerge if correct responses are instead preempted by an array of ten weaker alternatives,
with a mean activation of 0.01 and a standard deviation of 0.4 (Figures 1c and 1d). When comparing the
target activation to only one randomly chosen alternative, there is little chance of an error (4%) and little
effect on target RT distributions (but cf Shifted Wald parameters in Table 1). But considering all ten weak
alternatives yields error rates (20.9%) and target RT distributions more similar to the previous ‘strong
alternative’ simulation. Note, though, that the weak alternative array produces a different RT distribution
than the single strong alternative, and the censored correct distribution reflects it. Thus, whereas the first
simulation illustrated how errors affect target RT distributions by considering a single very strong alternative,
the process naturally extends to situations where one has multiple weak (or strong) alternatives.

6Note that this differs from traditional conceptions of a speed/accuracy tradeoff, as it describes consequences of data censoring,
rather than a response strategy.

7Or at least reduced interference – as the factors that promote alternative names often also weaken target responses, either
directly or via competition.
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Figure 1. Densities of expected target and alternative selection times for 100,000 trials, before (a,c) and after (b,d) applying a 
single−output−per−trial constraint. Uncensored (a) and censored (b) densities for target selection in the presence of a strong 
alternative. Uncensored (c) and censored (d) densities for target selection in the presence of either one or ten weak alternatives.

Table 1: Accuracy, mean RT, and variance, plus Shifted Wald
and ex-Gaussian fit parameters for the target RT distributions
in Figure 1. In a fitted Shifted Wald model (via Heathcote’s,
2004, fitwald()), α estimates the distance between a response’s
initial activation and its decision threshold, γ estimates the rate
of evidence accumulation, and θ estimates time external to the
accumulation process. In a fitted ex-Gaussian model (via Massidda’s,
2013, retimes::mexgauss()), µ and σ estimate mean and variance,
respectively, of a Gaussian component while τ estimates the skew
from an exponential component. The same set of expected target
RTs is used in all cases; the only differences are the properties of the
competitor activations, and therefore their likelihood of censoring
the distribution of correct response times.

Accuracy Mean RT Variance Shifted Wald Ex-Gaussian
α γ θ µ σ τ

RTTarget 1.00 798 27855 50 0.12 387 652 80 146
RTTarget < RTWeak competitor 0.96 785 22503 58 0.14 362 664 89 121
RTTarget < RTStrong competitor 0.81 756 16304 66 0.16 342 657 81 99
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Accuracy Mean RT Variance Shifted Wald Ex-Gaussian
α γ θ µ σ τ

RTTarget < RTFastest weak competitor 0.79 742 12099 104 0.20 233 671 84 71

Discussion

To consider how error-based censoring affects distributions of correct RTs, here I manipulated word error
rates by changing the accessibility of alternative names while holding target accessibility constant. Although
these simulations are quite basic, they importantly integrate error production with the analysis of correct
naming latencies to delineate an expected consequence of the former on the latter: simply because correct
responses must outpace possible errors, ceteris paribus any factor that promotes premptive errors will also
hasten mean correct word retrieval times by, essentially, imposing a stochastic limit on how slow any response
can be before another preempts it. As errors grow more frequent, observed target RT distributions shift
earlier, decreasing their means and variances8 and reducing a positive skew in their distributions. Within an
analytical framework that interprets correct RT distributions in terms of specific cognitive processes, without
considering errors, such distribution changes would erroneously indicate changes in multiple psychologically
interpretable parameters. More generally, these results challenge a popular assumption that RTs for correct
responses provide a pristine window onto error-free production processes (e.g. Levelt et al, 1999).

Although specifically considering word selection errors, these conclusions should at a minimum generalise to
any non-target outcome driven by difficulty accessing a target word (including, e.g., hesitations, ‘acceptable’
alternatives), and generalise to analogous conflicts at other levels of representation and in other response
domains. It can be easily demonstrated that more developed generative models (e.g. Oppenheim et al.’s
2010 Dark Side model) exhibit similar behaviors, but here I have used a simpler mathematical approach to
emphasize that these general patterns should emerge from any account where the speed of target retrieval
and the probability of an error depend in some way on the activation of the target response, which is to
say any reasonable theory of word retrieval. Although the extent and type of changes to an observed target
distribution depend on characteristics of the censoring distribution, the only cases that would fully escape
such effects are those where either target productions fail completely at random (without regard to their
strength), or target responses have been completely lost (thus for patient work it would be useful to distinguish
temporary paraphasias from wholesale word deficits).

The informative censoring considered here is far from the only factor that affects target RT distributions, and
error rates can of course also be affected by changes in the accessibility of targets as well as alternatives. For
instance, the Dark Side model’s account of cumulative semantic interference proposes that semantic errors
reflect target weakening as well as ‘competitor’ strengthening, and under competitive selection anything
promoting an alternative should consequently weaken the target. Thus, in practice we may expect to find
error effects paired with RT effects that are merely less robust than expected, rather than fully complementary
(but see Mahon, Costa, Peterson, Vargas, & Caramazza, 2007, for a prominent empirical example of such a
dissociations in the context of picture-word interference).

Given this interplay between error and response time effects – and a lack of robust statistical techniques to
correct for non-random missing data9 – how can we interpret response time data in the presence of error
effects? I see three possibilities, ordered from simplest to most complex. The first – and most frequent in
neuropsychology – entirely avoids analysing RTs in the presence of error effects (or error rate differences,
in between-subject comparisons). Avoidance makes some sense, also considering that one might generally
expect RTs that accompany high error rates to be dominated by noise, and thus unlikely to reveal reliable
patterns. In the interest of using every part of the buffalo, a second approach might allow RT analyses,

8This linked decrease is consistent with observations that these statistics correlate empirically (e.g. Wagenmakers & Brown,
2007).

9Quantitative correction remains an active area of research (e.g. Enders, 2010), but because proposed methods tend to correct
by introducing assumption-based compensatory biases, they necessarily introduce incorrect biases when the assumptions are
imperfect. Moreover, such corrections would still only allow approximations of data in the long tail of a distribution, where
distribution-fitting approaches tend to be rather volatile.
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while acknowledging possible biases introduced by the error patterns. Thus, finding complementary or
incommensurate error and RT effects within the same participants would not necessarily imply that the effects
reflect distinct underlying processes (as might seem reasonable to conclude, a priori). But an overpowered
and underconstrained caveat introduces the risk of explaining-away valid data. Therefore, a third approach –
and a far better way of using the buffalo – is to quantify the expected biases, generating predicted error and
RT data by explicitly simulating the underlying processes; such integrated approaches have dealt successfully
with simpler decisions in other domains (e.g. Ratcliff, 1978). Quantitatively fitting observed distributions for
error-prone picture naming, an n-alternative quasi-forced-choice task, may prove infeasible – requiring fitting
individual distributions for each alternatives decision latencies – but even an approximation should usefully
constrain predictions of such interdependencies. Although the Dark Side model’s oversimplified information
accumulation process was not initially developed for the task, reasonable extensions (Oppenheim, in prep)
may allow it to usefully serve in this capacity.

Conclusion

Although errors and response times both provide important clues about language production processes, we
typically consider them independently. Re-integrating these approaches requires considering not only how
speed affects accuracy, but also how accuracy affects (observed) speed. This step is particularly important
when considering correct response times in the presence of frequent errors: target retrieval processes, considered
alone, are a useful place to start, but may not adequately explain observed target retrieval times. Error
productions affect target RT distributions, limiting our ability to meaningfully interpret such distributions in
terms of underlying cognitive processes. However, to the extent that errors affect distributions predictably,
process models that integrate errors and response times may usefully estimate the direction and magnitude
of any biases that they introduce.
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Appendix A

Generating distibutions via a Shifted Wald function

Simulations

Starting with the assumption that a speaker semantically activates many candidate words, but ultimately
selects just one for production, we can characterise word retrieval as a race between these candidates, where
the most activated candidate will eventually win, and its retrieval time will depend, at a minimum10, on
the strength of its own activation (e.g. Oppenheim et al, 2010). The target word should usually be more
activated than alternative names, but internal or external sources of variance can occasionally lead to it being
underactivated and an alternative name overactivated, such that the alternative emerges instead; in this
situation, we can consider such errors’ effects on observed response time distributions for the target.

Formalising this approach, imagine that target word RTs on 100,000 trials are generated from a random
walk process, implemented as sampling from a Shifted Wald distribution with parameters {α = 30, γ =
0.15, θ = 565} (approximating parameters in Anders et al., this volume), where α represents the distance
between the word’s initial activation and its selection threshold, γ represents the mean rate of evidence
accumulation (i.e. the mean slope of the random walk), and θ represents the time taken by all other aspects
of the stimulus→response process (both before and after the decision process). For these same 100,000
trials, a single strong alternative tends to be slightly less activated; in a Shifted Wald model, less activation
might map onto the idea that dispreferred responses have higher α (‘threshold’) values, indicating greater
distance between the starting point and the threshold, and lower γ (‘accumulation rate’) values, yielding
the parameters {α = 40, γ = 0.1, θ = 565}. Considered independently, 100,000 trials cuing the target and
100,000 cuing the alternative predict the RT probability densities depicted in Figure A1a.

But because a person can only select one word on each trial, we assume that, on any trial where an alternative
reaches threshold first, it preempts the target, censoring the target’s RT from the observed distribution. By
convention, we analyse only RTs for correct responses, so eliminating 14,972 (15%) error trials (where the
alternative emerged instead) yields the modified probability density function shown in Figure A1b. Two
remarkable changes emerge. First, because naming errors stochastically preempt slower correct responses,
much like omission errors, they reduce mean RTs for the correct responses that remain.11 Thus, within a single
dataset, factors that promote errors may be counterintuitively associated with RT facilitation12, producing
apparent dissociations between error and RT effects despite a common source. Second, naming errors more
generally reduce the variance of correct RTs, by reducing the distribution’s positive skew. Table 2 confirms
the intuition that such censoring affects multiple parameters when applying two common distribution-fitting
analyses to the correct RTs. What is remarkable about this simulation is that these changes in correct RT
distributions emerge without any underlying change in the target activation nor its retrieval process, which
analyses restricted to correct RTs are commonly assumed to recover. Thus, correct RTs, in the presence of
error effects, do not simply reflect the correct functioning underlying error-free production, but also reflect
predictable biases from non-random data loss.

Similar biases emerge if correct responses are instead preempted by an array of ten weaker alternatives,
generated from ex-Gaussian parameters {α = 50, γ = 0.05, θ = 565} (Figures A1c and A1d). When comparing
the target activation to only one randomly chosen alternative, there is little chance of an error (1.7%) and little
effect on target RT distributions (but cf Shifted Wald parameters in Table 2). But considering all ten weak
alternatives yields error rates (11.9%) and target RT distributions a bit more similar to the previous ‘strong
alternative’ simulation. Note, though, that the weak alternative array produces a different RT distribution
than the single strong alternative, and the censored correct distribution reflects it. Thus, whereas the first

10For computational simplicity, this exercise implements noncompetitive selection, but all claimed patterns remain if assuming
competition.

11Note that this differs from traditional conceptions of a speed/accuracy tradeoff, as it describes consequences of data censoring,
rather than a response strategy.

12Or at least reduced interference – as the factors that promote alternatives often also weaken target responses, either directly
or via competition.
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simulation illustrated how errors affect target RT distributions by considering a single very strong alternative,
the process naturally extends to situations where one has multiple weak (or strong) alternatives.
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Figure 1. Densities of expected target and alternative selection times for 100,000 trials, before (a,c) and after (b,d) applying a 
single−output−per−trial constraint. Uncensored (a) and censored (b) densities for target selection in the presence of a strong 
alternative. Uncensored (c) and censored (d) densities for target selection in the presence of either one or ten weak alternatives.

Table 2: Accuracy, mean RT, and variance, plus Shifted Wald
and ex-Gaussian fit parameters for the target RT distributions
in Figure A1. In a fitted Shifted Wald model (via Heathcote’s,
2004, fitwald()), α estimates the distance between a response’s
initial activation and its decision threshold, γ estimates the rate
of evidence accumulation, and θ estimates time external to the
accumulation process. In a fitted ex-Gaussian model (via Massidda’s,
2013, retimes::mexgauss()), µ and σ estimate mean and variance,
respectively, of a Gaussian component while τ estimates the skew
from an exponential component. The same set of expected target
RTs is used in all cases; the only differences are the properties of the
competitor activations, and therefore their likelihood of censoring
the distribution of correct response times.

Accuracy Mean RT Variance Shifted Wald Ex-Gaussian
α γ θ µ σ τ

RTTarget 1.00 765 8906 30 0.15 567 681 43 84
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Accuracy Mean RT Variance Shifted Wald Ex-Gaussian
α γ θ µ σ τ

RTTarget < RTWeak competitor 0.98 762 8127 31 0.16 564 683 45 78
RTTarget < RTStrong competitor 0.85 745 5684 34 0.18 557 682 42 63
RTTarget < RTFastest weak competitor 0.88 744 5039 40 0.20 542 690 46 54
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Appendix B

Generating distibutions via an Ex-Gaussian function

Starting with the assumption that a speaker semantically activates many candidate words, but ultimately
selects just one for production, we can characterise word retrieval as a race between these candidates, where
the most activated candidate will eventually win, and its retrieval time will depend, at a minimum13, on
the strength of its own activation (e.g. Oppenheim et al, 2010). The target word should usually be more
activated than alternative names, but internal or external sources of variance can occasionally lead to it being
underactivated and an alternative name overactivated, such that the alternative emerges instead; in this
situation, we can consider such errors’ effects on observed response time distributions for the target.

Formalising this approach, imagine that target word RTs on 100,000 trials are sampled14 from an ex-Gaussian
distribution, with parameters {µ = 619, σ = 45, τ = 123} (parameters taken from Roelofs & Piai’s, 2017,
empirical estimations from a neutral distractor condition in picture-word interference). For these same 100,000
trials, a single strong competitor tends to be slightly less activated, implemented here as ~25% increases in
all parameters, {µ = 800, σ = 60, τ = 200}. Considered independently, 100,000 trials cuing the target and
100,000 cuing the alternative predict the log-normal RT probability densities depicted in Figure B1a.

But because a person can only select one word on each trial, we assume that, on any trial where an alternative
reaches threshold first, it preempts the target, censoring the target’s RT from the observed distribution. By
convention, we analyse only RTs for correct responses, so eliminating 10,536 (10.5%) error trials (where the
alternative emerged instead) yields the modified probability density function shown in Figure B1b. Two
remarkable changes emerge. First, because naming errors stochastically preempt slower correct responses,
much like omission errors, they reduce mean RTs for the correct responses that remain.15 Thus, within a single
dataset, factors that promote errors may be counterintuitively associated with RT facilitation16, producing
apparent dissociations between error and RT effects despite a common source. Second, naming errors more
generally reduce the variance of correct RTs, by reducing the distribution’s positive skew. Table 3 confirms
the intuition that such censoring affects multiple parameters when applying two common distribution-fitting
analyses to the correct RTs. Notably, although the error-based censoring primarily reduces the long right
tail of the correct RT distribution, thus decreasing τ , here it also increases µ to compensate, illustrating the
parameters interdependency. What is remarkable about this simulation is that these changes in correct RT
distributions emerge without any underlying change in the target activation nor its retrieval process, which
analyses restricted to correct RTs are commonly assumed to recover. Thus, correct RTs, in the presence of
error effects, do not simply reflect the correct functioning underlying error-free production, but also reflect
predictable biases from non-random data loss.

Similar biases emerge if correct responses are instead preempted by an array of ten weaker alternatives,
generated from ex-Gaussian parameters {µ = 1000, σ = 75, τ = 250} (Figures B1c and B1d). When
comparing the target activation to only one randomly chosen alternative, there is little chance of an error
(2.0%) and little effect on target RT distributions (but cf fitted model parameters in Table 3). But considering
all ten weak alternatives yields error rates (6.9%) and target RT distributions a bit more similar to the
previous ‘strong alternative’ simulation. Note, though, that the weak alternative array produces a different
RT distribution than the single strong alternative, and the censored correct distribution reflects it. Thus,
whereas the first simulation illustrated how errors affect target RT distributions by considering a single
very strong alternative, the process naturally extends to situations where one has multiple weak (or strong)
alternatives.

13For computational simplicity, this exercise implements noncompetitive selection, but all claimed patterns remain if assuming
competition.

14I use the term ‘sampling’ here because, although researchers often identify parameter changes with particular psychological
processes, ex-Gaussian analyses tend not to assume that RTs are actually generated by an ex-Gaussian mental process.
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Figure 1. Densities of expected target and alternative selection times for 100,000 trials, before (a,c) and after (b,d) applying a 
single−output−per−trial constraint. Uncensored (a) and censored (b) densities for target selection in the presence of a strong 
alternative. Uncensored (c) and censored (d) densities for target selection in the presence of either one or ten weak alternatives.

Table 3: Accuracy, mean RT, and variance, plus Shifted Wald
and ex-Gaussian fit parameters for the target RT distributions
in Figure B1. In a fitted Shifted Wald model (via Heathcote’s,
2004, fitwald()), α estimates the distance between a response’s
initial activation and its decision threshold, γ estimates the rate
of evidence accumulation, and θ estimates time external to the
accumulation process. In a fitted ex-Gaussian model (via Massidda’s,
2013, retimes::mexgauss()), µ and σ estimate mean and variance,
respectively, of a Gaussian component while τ estimates the skew
from an exponential component. The same set of expected target
RTs is used in all cases; the only differences are the properties of the
competitor activations, and therefore their likelihood of censoring
the distribution of correct response times.

Accuracy Mean RT Variance Shifted Wald Ex-Gaussian
α γ θ µ σ τ

RTTarget 1.00 743 17433 41 0.14 443 618 41 125
RTTarget < RTWeak competitor 0.98 735 13456 48 0.15 426 635 60 99
RTTarget < RTStrong competitor 0.89 716 9427 59 0.19 401 636 55 80
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Accuracy Mean RT Variance Shifted Wald Ex-Gaussian
α γ θ µ σ τ

RTTarget < RTFastest weak competitor 0.93 719 8734 72 0.20 360 655 68 64
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