

Speech errors reflect levels of representation...

kelp reef beef	$reef \rightarrow kelp$	Word error (semantically related)
	$reef \rightarrow beef$	Phoneme error (with lexical bias)
approx voiced retro	$reef \rightarrow leaf \\ > reef \rightarrow beef$	Phoneme error (with phonemic similarity effect)

... and inner speech could, in principle, operate on any

Silent articulation affects error patterns in inner speech Gary M. Oppenheim & Gary S. Dell ^{University of Illinois at Urbana-Champaign} gopenh2@illinois.edu gdell@illinois.edu

Correcting for potential monitoring bias (after Nooteboom & Quené, 2008)

MouthedUnmouthedSimilarDissimilarSimilar123759276

Reported

outcome

"lean reed reef leech"

of these levels

Three perspectives:

Abstract linguistic representations. Awareness of inner speech, and therefore inner speech errors, occurs at the phonological level (e.g. Oppenheim & Dell, 2008; Wheeldon & Levelt, 1995)

2. Embodied sensory-motor imagery. Inner speech is like overt speech, minus the sound or motor movement (e.g. Dell, 1978; Postma & Noordanus, 1996).

3. Flexible abstraction. Inner speech varies in the extent to which sensory-motor representations are used

Compared to overt speech (from Oppenheim & Dell, 2008)

Lexical bias suggests intact phoneme processing

Lack of phonemic similarity effect suggests phonemes are abstract

32 matched sets of stimuli

Methods

	Similar onsets				Dissimilar onsets			
Word outcome	lean	reed	reef	leech	bean	reed	reef	beech
Nonword outcome	lean	reed	wreath	leech	bean	reed	wreath	beech

80 participants

Results Similar overall error distributions

Mouthed Unmouthed

Where is the crucial difference between inner and overt speech?

Combined data from the current study and Oppenheim & Dell (2008)

• Silent articulation, without auditory monitoring, is sufficient to create a phonemic similarity effect in speech errors

• Inner speech tends to be specified to at least the phoneme level, but not necessarily to the level of articulatory representations

• This finding replicates Oppenheim & Dell (2008)

• Argues against a strong embodiment account of inner speech, where cognition is necessarily based in sensory-motor processes

Three predictions:

• Additional motor planning, or execution, can create a form of inner speech that incorporates articulatory information

• Argues against a strong abstraction account of inner speech

Speakers can flexibly adjust the abstractness of their imagery
This claim explains variable results in the field (e.g. Brocklehurst & Corley, 2009; Dell, 1978)

References

Brocklehurst, P. & Corley, M. (2009). Lexical bias and the phonemic similarity effect in inner speech. Paper presented at the 15th Annual Conference on Architectures and Mechanisms for Language Processing, 7-9 September 2009, Barcelona.
Dell, G. S. (1978). Slips of the mind. In M. Paradis (Ed.), *The fourth LACUS forum* (pp. 69-75). Columbia, S.C.: Hornbeam Press.
Dell, G. S. (1986). A spreading activation theory of retrieval in sentence production. *Psychological Review*, *93*, 283-321.
Nooteboom, S., & Quené, H. (2008). Self-monitoring and feedback: A new attempt to find the main cause of lexical bias in phonological speech errors. Journal of Memory and Language, 58(3), 837-861.
Oppenheim, G. M., & Dell, G. S. (2008). Inner speech slips exhibit lexical bias, but not the phonemic similarity effect. *Cognition*, *106*(1), 528-537.

Postma, A., & Noordanus, C. (1996). The production and detection of speech errors in silent, mouthed, noise-masked, and normal auditory feedback speech. *Language and Speech*, *39*, 375-392.

Wheeldon, L. R., & Levelt, W. J. M. (1995). Monitoring the time course of phonological encoding. *Journal of Memory and Language*, *34*(3), 311-334.

This work is supported by NIH DC00191 and HD 44458